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We examine a quasilinear optimal control system. We justify the applicability 

of the perturbation method to some control problems. Various systems for con- 
structing an approximate solution of control problems with a small parameter 
were presented in /l - 4/. A number of practical optimal control problems can 

be described by systems containing linear terms and small, in general, nonlinear 
perturbing factors. The scheme of successive approximations of the perturbation 
method developed below, can prove to be useful for the analytic investigations 

of such problems. The method is justified for quasilinear systems with a quadra- 
tic performance index. 

1, Let a control system be given by the equation 
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where the vector z (t) belongs to an n-dimensional Euclidean space & . The follow- 
ing constraints on the coefficients of system (1.1) are assumed to be constantly fulfilled. 

The given matrices A (t), B (t), 0 < t < 2' are measurable and bounded, and r> 0 

is some constant. The vector-valued function f (t, Z) E E, is measurable in both 

ar~men~ and satisfies the following conditions : (1.3 
I f 6% 0 - f h, t) 1 \c (111 (Iv) 1 $1 - 22 f, 1 f (..L, t) [ =G a3 f a2 I 5 I 2 

for any x1, x2 e En, 1 xi 1 < N and any 0 < t < T . Here the constants ai > 0 
and the symbol 1 z J denotes the Euclidean norm of vector x e E, ; the constant a, 

depends, in general, on the dimensions of the regions in E, to which x1, x2 belong and 

a, (N) does not decrease. Thus, the first of requirements (1.2) signifies that the function 

f (z, t) satisfies the local Lipschitz condition with respect to its first argument. 

Problem 1. Choose the control u (t) e El which minimizes the quadratic func- 
tional (the performance index) 

Here the prime is the sign of transposition, the marrices A,, L, are measurable and 
bounded, H and L, are nonnegative definite, and L, (t) is uniformly positive definite 

on the interval [O, TJ, When 8 = 0 the problem of minimizing functional (1.3) on 

the trajectories of system (1.1) admits of an explicit analytic solution (see /5/, for ex- 

ample). In the present paper we propose and substantiate an algorithm for constructing 

controls ensuring accuracy, in the sense of functional I f of order c2 for arbitraty suffi- 

ciently small 8 > 0 and we find the upper bound of the values of E for which &he pro- 

posed algorithm is valid. Sections 2 and 3 are devoted to the proof of the algorithm, 
while its constructive part is set forth in Sect,& 

2, Let us consider the controlled system (1.1) for e = 0 with performance index 

(1,,3). The optimal control, when E = 0 , is denoted by uo, while the &orr~pond~g 
trajectory, by x,. Since IS/ 

uo (4 = --L,-1 0) B’(t) p (t) x (8) (2.1) 

(here t,” is the matrix inverse to L,), the value of functional (l-3), corresponding to 

We note that the matrix P (t) is defined only by the coefficients of the original prob- 

lem (1.1) ,(l, 3). Therefore, it can be found right at the beginning of the control process. 

By treating the uO, x0 constructed in this manner as the zero approximation, we form a 

sequence of controls ubas the sequence minimizing for each k = 1, 2, . . . functional 
(1.3) on the rrajectories of the linear system 

By xkwe denote the trajectory of system (2.3) corresponding to uk, and by irk , the value 
of functional (1.3). Here, a standard application of the dynamic programing method (see 
/S/, for example) shows that for k > 1 t uk and 1, are given by the formulas 
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u/t (t) = -L2-l (t)B’ (t) [I’ (t) x It) + Gig’ (t)l (2.4) 

where Glk, f&k, Qk satisfy almost everywhere the equations 

&+_’ (t) + ef’ (%-l (t), f) p (t) + &k @) B, (t) i’ (t) = 0, (2.5) 

Glk (T) = 0 

Qk’ (t) + Go (t> Ef (x11-1 (t), t> + ef' @k-l (t>, t> %k (t> + 

Glk (t)B, (t) Glk’ (it) =-= 0, Qk (T) - 0, Glk’ (t) = G2k (f) 

Let us establish the compactness of the sequence xk, Glk for sufficiently small E, 

by using the method of /6/. From (2.5) it follows that 

G,,,(t) = ~~~~~~~--1(S)rs)P(~~z~(t,S)~ (2.6) 

t 
ihl(4 s) - = I, zI (t, s), 

at 
z1 (t, t) = I, Al (T) = A (T) - BI (z) p W (2.7) 

Analogously, by virtue of (2.3),(2.4), for h- = 4, 2, . . . we have 

zk(t)=Zl(t,O)x(0)_teSel(l,s)f(~k-l(s),s)ds- (2.8) 

0 

8 i z1 (t, s) B1 (s) ds f 21 (s, SI) P (s,) f h-1 (sd SI) & 
0 s 

We note that from the requirements imposed on the coefficients of (1.1) and (1.3) in 

Sect. 1 follows the existence of the bounded nonnegative-definite matrix P (Q, 0 < 
t < T (see /5, ‘I/, for example). Hence from (2.8) follows the existence of a constant 

mosuch that 
I x0 (4 I f SUPt fzz (t, 0) 5 (0) 1 = m, (2.9) 

for all 0 < i! < T. 
Further, let us define and fix a certain number b satisfying the inequality (see (1.2)) 

Q+~+Dwn,l)sup,~[ zl,(tls)tl(l-tIjB1(S)f/X (2.10) 

~~~~~~.a,)~(,)Uda,)~= (wl-aow?)& =f+&& @G<T 
* 

From this definition of constant p and from (2.8) it follows that 

I xl (4 I < m. + @ (2.11) 

But all the xk (t) satisfy a bound similar to (2.11) for any SUffiCiently small E . In fact, 

on the basis of (2.8), (1.2) the inequality 

I tk (4 I < m. + @ (2.12) 

is valid for all E: ;Z 0 for which 
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The uniform boundedness of Glk (t) also follows from (2.12), (2.6), (1.2). 

To prove the e~~continu~~ of sequence Sk ($1 we take two arbitrary points tr < tz 
on interval 10, Tf and we integrate both sides of (2.3) from t, and 8s. Hence, with 

due regard to (2.4), (2.5), (2.8), (2.12). follows the equicontinuity of xk (i), and with 
it, that of Glk (t). 

We set 
Yk = maxt f Sk.+% @I - Sk @I it Q<$<T 

Then from (2,8), (1.2) we conclude that 

%i+l < EYka, b0 + @> fh (2.14) 

where the canstam PI has been defined in (2. IO), Let us now require that 

8% k%l + $0 BI < 1 (2.15) 

Relations (2.14) and (2.15) permit us t0 eSim&te f 5 ff) - tk (f) 1. We have (bmging 

in (2.8)) 

Ix(E) - % (r) I = I 2 (a+1 w-xi (Q I f (2.16) 
i=k 

4% wx 0% -I- &PI PJk II. - 8% (43 + EP) PJ” 

Analogously, with due regard to (2.6), we obtain 

Finally, we note that from the uniform convergence of sequence 5kr &$a to 5, Gt it 
follows that the limit functions CC, Gl are the solution of the boundary-value problem 
formed by system (1.1) and the relations 

Here, on the basis of (2.4), the value of functional (1.3) on the trajectory of system (l.l), 

corresponding to control (2. IS), is 

Below 
to the 

3, 

where 

I, = xf (0) P (0) 2 (0) 4- G, (0) x (0) f d (0) 6 (0) -t- Q 6.8 @,=I 
G,' (t) -= G, (t) 

Q’ (t) + G, 0) ef (5 (0, 9 + ef’ (3 (0, 9 G,’ (0 + 
G, (t) B, 0) G1” (t) = 0, Q(T) = 0 

we have shown that me ap~~ximatio~ aI, xr ensure an accuracy wirh respect 
funcrkmal of order &a, while approximations t+,, .zO t an accuracy of order e. 

3.1. Let us prove me existence of a solution to Problem 1. We set 

I, = inf,, I (3.1) 

the infimum is computed over the set of all admissible controls, With due regard 
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ta (2. lQ), 1, -< r,, < 00. Hence there exists a sequence of controls ui (t), i == I, 
2 such that the trajectories ti (t) of system fl. 1) and the values 12 \c I, of 

~~~~*~~ (1,3), corr~pond~~~ to them, satisfy the relation 
T 

lim+, ii = I,, s r&i’ (t) L, (t) Ui (1) dc < IO (3.21 
0 

From (3,2] and rf-re ~n~f~rn positive def~~t~~~ ot F L, (t> fbfkws &e ex:xistence af a 
coIfStlint c, > 0 such &at 

~\ai(t)12$t<Cl 
(3.31 

uniformly with respect to li . 0 

Let us now show that the unjform boundedness of sequence zi (t), 0 < t < I’, i = 

1, 2, I** follows from (3,3f. For this we set ui ---. I~*cc~_ by virtue of (I, 1) and (1,2f 

we have vi (8) < wI (9, where wi (t) is given by the Riocati equation 

Wi’ (2) = wi (t> A, + I[ B (0 11 I ui (q 1 2 + W@i2 (87 

02 (0) ezzz Ui (0) 

Thus, we have constructed, by the method indicated, a constant m,for which f ri (t) 1 < 

m,, i.e. the sequence zh {t) is e~icon~uous. Now, the validity of the asRrtiDn in 

sect. 1 can be established in standard fashion, similarly to /8 - 1%‘. 
3.2, Let us show that from the fact of existence of the optimal control uti (1) follows 

the existence of a control LL (I) and a trajectory I (8) of system (1. I), ~orr~po~ing to 
u (fJ ) saeisfp~g r&&cm (X.1>, (2.18). (2. I$>, and being such that 1 (u, X> differs from 

1, by a quantity of order e s. Thus, in particular, we shall have established that the exis- 
tence of a solution of the boundary-value problem (1.1). (2,X8) follows from the exist- 
ence of the optimal controol 1~s (t> . To prove this we consider an auxiliary problemof 
M~~~~~~~~~ ~~~~~~ (I.3) i3fl &e m+x%arim Of tie f&ear s$fs%zm 

x’ (t) = A (t) .x (t) -k c.f (x, (t), 1) -f- B (2) u (t) 651 

We denote the minimal value of functional (1.3) on the trajectories of system (3.5) by 
I,. From the definition of U* (t) and (2. Xl) we conclude that I, < I, << 1,. In 

addition, from the linearity of (2.11) and (X,3} follows the existence of the optimal 
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control u1 (t) and of the trajectory X1 (t) on which the value I, of functional (1.3) 
is achieved /5/. In analogous manner we construct the optimal control uk (t) which 

supplies the rn~~urn of ~nctional(l.3) on the trajectories of the linear system (2.3). 
Fry Ikand Xh(t)we denote the value of functional (1.3) and the trajectory of system (2.3) 

corresponding to uk (t). The subsequent construction is analogous to that in Sect. 2. 

Namely, we fix a certain number 6 > p satisfying the inequality .# > flz (m,), ms= 
max (mot mr). Then, similar to (2.12), we get that for all f for which 

Bs ho) + e G%moB + ~~49 I4 <T 

saI (m. 4 86) S, < 1 
(3.6) 

the sequence Sk (t), k >, 1 is bounded. Precisely, 

I X& 0) I d m. + 8 

Further, by a verbatim repetition of the ar~men~ in Sect. 2, we get that zk, &i( con- 
verge to CC, u which satisfy (1.1) ,(2.18), (2.19). To estimate the difference - I, + 

I (2, u) it is sufficient to estimate I (5, U) - I, since I, B I, Q I (I, u). However, 
from (2.4) - (2.8) and (2,18), using bounds of type (2.16) and (2.17), we get that 

I (5, u) = I, -j- 0 (e2) 

Eiy the same token we have proved the assertion of Sect. 3.2. 
3.3. Let us show that the solution of-the boundary-value problem (1.1). (2.18) is 

unique in the region 1 X 1 < ms -!- ep . Assume the contrary. Let xl, Xs be two 
solutions of (1.1). (2.18). Then, with due regard to (2.8). we have 

Xl(f) - x2 @I = (3.7) 
0 

t T 

+l(~,s)Rl(s)~ Zl'(S9 s>Q+)[f(z,(~)9 z) -f@a(@, z)l de3 
0 d 

We now set 
ps= snp,~XI(+-*(~)j~ OBt<r (3.3) 

Then from (3.8), (3.7) we obtain 

fill< B&St% (m0 + a# 

Hence from (3.5) we conclude that xr (t) = xs (t). From this identity follows the 

uniqueness of the solution of boundary-value problem (1. I.), (2.18) with respect to Gr(t) 
as well. 

4. Above we have established the existence of a solution of Problem 1 and proposed 

an approximate method for solving it. Th’is method consists of two stages. 

lp. Using the solution of Problem 1 for a linear system (1.1) with E = 0 (i.e. 
using (2.2)), we determine es such that relations (3.4). (3.5) are valid for all 0 < E < 

e,. We emphasize that the value E* depends only on the matrix P (t) and on the coef- 
ficients of the controlled ssystem (1.1). 

2’. For these values of e we determine from formulas (2.1) and (2.8) the zero 
approx~ation us, x,, to the optimal control and trajectory, while from formulas (2.4). 

(2.6). (2.8), the first approximation ul, x1. 



764 V.B.Kolmanovskil 

We note that by virtue of (2.1) and (2.4) the zero and first approximations construe 

ted to the optimal control are obtained in a form suitable for synthesis (i. e. as functions 

of the phase coordinates). 
Let us consider certain estimates of the closeness of the optimal values of functional 

(1.3) for the original controlled system (1.1) and for the auxiliary dynamic system (2.3). 

We start with the zero approximation which is determined by formulas (2. l), (2.8) with 

E = 0, while the corresponding value of functional (1.3) equals 

5’ (0) p (0) 5 (0) (4.1) 
From (2.18), (2.6) we conclude that 

T 

\ G1 (t) \ < E (a, + n, (mo + #?) f-w, 1 it p (S) 21 (t, S) tt th 
t 

(4.2) 

Relations (4. l), (4.2)* (2.19) show that the difference between the optimal value of func- 

tional (1.3) and the zero approximation to it is of order E. 

The first approximation is given by formulas (2.4) - (2.8) in which we should set 
k = 1, Using (2.4) - (2.8), (2.16). (2.1’7) with k = 1 ,analogously to the zero approxi- 

mation, we get that the difference between the optimal value of functional (1.3) and 
the first approximation to it is of the order 6% since the functions Q and Qk are the 

squares of the quantities already obtained. 

We now turn to a more interesting question which is the following. We take the con- 

trol nk, k =O, 1, determined by (2.4), and we control system (1.1) using uA. We are 

required to determine the allowable error in functional (1.3) when the optimal control 

in system (1.1) is replaced by uk Here it is sufficient to establish a bound of the form 

(2.16), since from it follows, completely analogously to (4.2) and (2.17), a bound on the 

accuracy with respect to the functional. Thus, we take some arbitrary fixed k and we 

estimate the difference between the solution of problem (1. l), (2.18), (2.1.9) and the 

function y (t) defined by the following relations: 

yS (t) = A (t) y (t) + .$ (y (0, t) - B1 (t) V’ (0 Y 0) + f&k’ (0) (4.3) 

y(0) = z(O), cr<t<T 

where Glk (t) is a solution of Eq. (2.5). Et can be shown that the solution y (t) of the 

Cauchy problem (4.3) exists and satisfies bound (2.12). 

We now set r (t) = x (t) - y (t). Then on the basis of(l.l),(2.18),(4.3)*(2.7) 

Hence, applying the Gronwall-Bellman lemma, in view of (2.17) we obtain the desired 
bound on the difference x (1) - y (t). Here the estimate of the accuracy with respect 
to the functional can now be established similarly to (2.1’7) and (4.2). This estimate 

shows that the control in the zero approximation (2.1) ensures an accuracy with respect 
to the functional of order E, while the control in the first approximation (2.4), is of the 
order e2. 

Example. As an illustration of the method developed we consider a planar prob- 
lem of the optimal descent of an axisymmetric controlled object with due regard to the 
decelerating force of the atmosphere. Assuming that the motion is stabilized, we write 
the system of equations of the center of mass in the form /ll/ 
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R’:vsin0 

Here Y is the absolute value of the velocity, 8 is the path angle, R is the distance 

from the Earth’s center to the craft’s center of mass, m s const is the mass, 16 is the 

thrust, cJ (M) is the dimensionless drag coefficient, iM is the Mach number, 3 is the 
area of the midsection, p (y) is the atmospheric density, g (R) is the freefall accelera- 

tion, y = R - R,, R, is the Earth’s radius. It is assumed that the balanced angle of 

attack can be neglected since we take 8 s - l/s n in what follows. 

If we assume that gravitational force acting on the body is negligibly small in com- 

parison with the remaining forces, i.e. thrust and drag, and if we take it that the motion 

is close to a vertical fall, i.e. 8 = - n/2 + A@, where the quantity Al!Ia can be neg- 

lected, then the system of equations simplifies considerably and by virtue of (4.4)takes 

the form 
dT/dR = - u + Y (R, T) P (Y) T, 2T = mu2 (4.5) 

d cos 8 / dR = [g (R) -- 9 / R] 

where T is the object’s kinetic energy, y = m-1 ~$2 is the ballistic coefficient. We 

should note that with the indicated accuracy - AF the first equation can be integrated 

independently of the second one. The atmospheric density (see /ll/ ) can be taken 

equal to 
P W = PO exp (-- 6,yf 

where po, 6, are given constants. We assume further that the ballistic coefficient Y is 

-r=co+ .&a (g+xp[- 63 ($- q2] (4.7) 

where co, 6,, 6s are given constants, c is the speed of sound in the medium. This as- 

sumption can be taken as fulfilled for certain types of wingless crafts /Il/. We shall 

measure the altitude Y from the point of intersection of the vertical along which the 

body is descending to the Earth’s surface and we shall suppose that the numbers ~1, YZ, 

yl 23 Ya are given. The value of the kinetic energy T at altitude gi is given andequals 

T (~1). 
Problem 2. Choose the control u in (4.5) so as to minimize the functional 

ISTz(yz)+ +@)ds (4.8) 
I/z 

We note that by varying the parameter L, in (4.8) we can regulate the value of the 

kinetic energy at altitude ya. Let us first consider the auxiliary problem of minimizing 

functional (4.8) on the trajectories of (4.5) without constraining the direction of the ve- 
locity vector, and next let us show that the solutions of this auxiliary problem for small 
a yield as well the solution of Problem 2. On the basis of (4.5) - (4.8) the auxiliary 

problem posed reduces to Problem 1. In addition, the theorem’s requirements are fulfilled 
on the basis of (4.5) - (4.7), which in rhe case being examined yields the formulas for 
the successive approximations to the optimal value of functional (4.8). 

We cite certain calculations as an illustration. On the basis of (4.5) - (4.7)theoptimal 
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control in the zero approximation, solving me auxiliary problem, is 

l+t id = fa-l fT i!d p (Sl - $1 
Here, inview of (2.l), (2.2) 

I 

W--M, 

p (h) = a 2 (h, J/l - !/2) + 
s 

BlZ (12, 8) as -I, 
I 

13, ‘=1 Lq 

az (h, s) 
II 

~ 7: - 2cop (!il - h) 2 (h, s), 
ah 

2 fs, s) =Z 1 

pl.9) 

FroM Eq. (4.5) with E r 0 and from (4.6) - (4.9) it is easy to determine the zero ap- 

proximation T, tyft and next, using (2.4) and (2.5X the first approximation z’,, ttl of 
the solution of the auxiliary problem. 

Now, to solve Problem 2 it suffices to note that the approximations T,J,, {AI;, k = 0, 

1 * . , constructed in the auxiliary problem yieId, for small a I the approximations for 

Problem 2 as well. In fact, for this it is sufficient only to verify that the successive ap- 

proximations TIh. do not vanish, For TO this follows in view of (4.9) and (4.5) from 

the homogeneity of the equation satisfied by T,. Using this fact, the uniform bounded- 

ness (see Sect, 2) of the successive approximations of the auxiliary problem, we get that 
the approximation T, does not vanish for an appropriate choice of F . 

Nose. We note that the descent problem with due regard to the force of gravity can 

be analyzed in similar manner. Here the descent problem can be reduced to Problem 1 
by imposing constraints derived from the requirement that the successive approximations 

Tk, k = O,l in the auxiliary problem do not vanish. 
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