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APPLICATION OF THE PERTURBATION METHOD
TO SOME OPTIMAL CONTROL PROBLEMS
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(Moscow)
(Received April 9, 1973)

We examine a quasilinear optimal control system. We justify the applicability
of the perturbation method to some control problems, Various systems for con-
structing an approximate solution of control problems with a small parameter
were presented in /1 — 4/. A number of practical optimal control problems can
be described by systems containing linear terms and small, in general, nonlinear
perturbing factors. The scheme of successive approximations of the perturbation
method developed below, can prove to be useful for the analytic invesrigations
of such problems. The method is justified for quasilinear systems with a quadra-
tic performance index.

1, Let a control system be given by the equation
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T =A@Qx@®)+ef@®), )+ BOu@), z(0) ==z (1.1
0t T

where the vector x () belongs to an n~dimensional Euclidean space E.,, . The follow-
ing constraints on the coefficients of system (1.1) are assumed to be constantly fulfilled.
The given matrices 4 (£), B (2), 0 < ¢ < T are measurable and bounded, and £
is some constant, The vector-valued function f (¢, z) & £, is measurable in both
arguments and satisfies the following conditions : (1.2)

[y 0 —F @ DI<a W) |a—al [f@ §]|<a+oale]®
forany z,, 7, & En, | ;| < Nand any 0 <t < T . Here the constants o; > 0
and the symbol | & | denotes the Euclidean norm of vector z € K, ; the constant a,
depends, in general, on the dimensions of the regions in £, to which x,, z, belong and
@, (V) does not decrease, Thus, the first of requirements (1.2) signifies that the function
f (z, t) satisfies the local Lipschitz condition with respect to its first argument.

Problem 1. Choose the control u (¢) & E,; which minimizes the quadratic func=
tional (the performance index)

[@w) =2 (O Ha (D) + (& O L@z @)+ O Le@u®ld @.3)

Here the prime is the sign of transposition, the matrices Ly, L, are measurable and
bounded, H and L, are nonnegative definite, and L, (f) is uniformly positive definite
on the interval [0, T']. When & = O the problem of minimizing functional (1.3) on
the trajectories of system (1.1) admits of an explicit analytic solution (see /5/, for ex-
ample). In the present paper we propose and substantiate an algorithm for constructing
controls ensuring accuracy, in the sense of functional 7 , of order &2 for arbitraty suffi-
ciently small & > 0 and we find the upper bound of the values of & for which the pro-
posed algorithm is valid. Sections 2 and 3 are devoted to the proof of the algorithm,
while its constructive part is set forth in Sect. 4,

2, Letus consider the controlled system (1.1) for & = 0 with performance index
(1.3). The optimal control, when & = () , is denoted by u,, while the corresponding
rajectory, by Z4. Since /5/

Uy () = =Ly () B ()P (#) « (2) (2.1)

(here L, is the matrix inverse to L, ), the value of functional (1. 3), corresponding to
trol (2. 1), equals

control (2.1), equa 2 (0) P (O) . {0) @.2)

We note that the matrix P (#) is defined only by the coefficients of the original prob-
lem (1.1),(1.3). Therefore, it can be found right at the beginning of the control process.
By treating the u,, Z, constructed in this manner as the zero approximation, we form a
sequence of controls u, as the sequence minimizing for each & = 1, 2, ... functional
(1.3) on the wajectories of the linear system

Z (W) =A@ @)+ ef (@ (O O+ B@Hu (2.3)

By z,we denote the trajectory of system (2.3) corresponding to uy, and by [, , the value
of functional (1.3). Here, a standard application of the dynamic programing method (see
/5/, for example) shows that for k > 1, u, and I, are given by the formulas
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up (t) = =Lt (OB (1) [P () = (1) + G’ ()] (2.4)
Iy =2 (O)P (0) z (0) + Gy (0) z (0) + 27 (0) Gox (0) + Q@ (0)
where Gyp, Ggp, @ satisfy almost everywhere the equations
G ) +ef @ (), DP W)+ G @B ()P () =0, (2.5)
Gy (T) =0
Qr () + Gyr () ef (we (), 1) +&f (zx-1 (1), 1) Gua” () +
G OBy (1) Gy’ (1) == 0, Qu(T) =0, G' (1) = Gar ()

Lert us establish the compactness of the sequence gz, G, for sufficiently small g,
by using the method of /6/. From (2.5) it follows that

T
Gy () = &\ /' (25-1(5)8) P(5) 21 (8, 5) ds (2.6)
t

gﬂé(,tz—'s-)'=z41(t)zl(t,3), nt,ty=1, A,(x)=A()—B(v)P(r) (2.7)

Analogously, by virtue of (2.3),(2.4),for & =1, 2, ... we have
t

2 () = 2 (¢, )z (0) + aS 2y (£, 8) f (X1 (5)s 8) ds — 2.8)
t T
"IS 21 (¢, 5) B1 () dsg 21 (8, 81) P (81) f (211 (1), $1) dss

We note that from the requirements imposed on the coefficients of (1,1) and (1.3) in
Sect. 1 follows the existence of the bounded nonnegative-definite matrix P (#), 0 <C
1< T (see /5, 1/, for example). Hence from (2.8) follows the existence of a constant

Mosuch tat |20 () | << sup, |z (¢, 0)z(0) | = my 2.9)
forall 0 T

Further, let us define and fix a certain number [ satisfying the inequality (see (1.2))
T

B> (03 + agmo®) SuPtS [ 2, (G )N+ | B (9] X 2.10)

0

LA |

I22(550) P (s0)]dsy) | ds = (05 + come?) By = Ba(ma), 0t <7

From this definition of constant f and from (2.8) it follows that
fz, @) | < mq + &P (2.11)

But all the xj (1) satisfy a bound similar to (2.11) for any sufficiently small £, In fact,
on the basis of (2. 8), (1.2) the inequality

fzn () | < mo -+ e (2.12)

is valid for all & > O for which
Ba (mo) -+ & (QagmeP + anef?) f, < P (2.13)
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The uniform boundedness of Gy, (£) also follows from (2.12), (2.6), (1.2).

To prove the equicontinuity of sequence z, (f) we take two arbitrary points ¢, & %,
on interval [0, T'] and we integrate both sides of (2.3) from #, and f£,. Hence, with
due regard to (2.4), (2.5), (2.8), (2. 12). follows the equicontinuity of zj (f), and with
it, that of G,y (8).

We set

Ye=max, [T O — 2 ()], o<igr
Then from (2.8), (1.2) we conclude that

Yo S VRS (Mg + ) By (2.14)
where the constant §; has been defined in (2,10), Let us now require that
gy (my -+ ef) By < 1 (2.15)

Relations (2, 14) and (2.15) permit us to estimate |z (f) — z,, (#) |. We have (binging
in (2,8))

[2(t) — 2 (1) | = | D) @i (O)—23 ()| << 2.16)

i=k
&By (8 (o + €B) By)* [1 — eay (mg + £B) B,
Analogously, with due regard to (2.6}, we obtain

|G () — Gua (1) | < &% (mg + €B) Ba [1 — 0y (g -+ eB) By X (2.1T)
T

sup; g P(s)z(t,s)ds

Finally, we note that from the uniform convergence of sequence y, Gy to z, Gy it
follows that the limit functions z, G, are the solution of the boundary=value problem
formed by system (1.1) and the relations

ul(t) =—Lt (B @ LP )z () + G ()] (2.18)
G @) +ef (), PO+ G (A (@) —
GOB P =0, G(T)=0

Here, on the basis of (2.4), the value of functional (1.3) on the trajectory of system (1.1),
corresponding to control (2, 18), is

Iy =z O PO)z(0)+60z0)+2 06O +00) @19
G () =G ()
CWO+G@)ef(z®), &) +ef (@), G @)+

G () B () & () =0, Q1) =0

Below we have shown that the approximations u,, x, ensure an accuracy with respect
to the functional of order ¢?, while approximations u,, z,,an accuracy of order e.

3, 3.1, Letus prove the existence of a solution to Problem 1, We set
Io = infu I (3' 1)
where the infimum is computed over the set of all admissible controls, With due regard
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to (2.19), 1, << T, < o. Hence there exists a sequence of conmols #; (£}, i = 1,
2, .. ., such that the wajectories z; () of system (1,1) and the values [; <C 7, of
functional (1. 3), corresponding to them, satisfy the relation
T
limi«ww Ii == 101 S ui' (t) Lg (t) ui(t)dt<n (3.2)
0
From {3.2) and the uniform positive definiteness of L, (f) follows the existence of a

comstant ¢; > 0 such that r

Vjm@ P <e
uniformly with respectto i, 0
Let us now show that the uniform boundedness of sequence z; (), 0 Lt T, i =
1, 2, ... follows from (3.3). For this we set v; = x,'z;. By virtue of (1,1) and (1,2)
we have p; (/) < w; {f), where w; () is given by the Riccati equation

o () = o, ()4, 1B @ u; () ]* -+ exy0.” (2),

@; (0) = v; (0)
Ay =sup; QA @O+ 1B @l + &+ 200,05

3.3)

We represent ®; (£} in the form ©; = w; -+ @, where
0 (O = 05 ) Ar B DN ui ) 0, 0) = 0 0)

On the basis of (3,3) all the ®;, () are uniformly bounded, Hence follows the uniform
boundedness of all v; (), if only

e < 2T Veres) @)

£y = OgSUP;, L (1), 0<tT

t
€ = olg SUD;, 035" (7) eXp S {Ay + 2ecymy, () ds
[

Thus, we have constructed, by the method indicated, a constant m,for which | z; (¢) | <C
my, i.e, the sequence x; {f) is equicontinuous, Now, the validity of the assertion in
Sect, 1 can be established in standard fashion, similarly to /8 ~ 10/,

3.2, Letus show that from the fact of existence of the optimal contol u, {#) follows
the existence of a control & {{} and a trajectory x (¢} of system (1.1}, corresponding two
u {#) , satisfying relations (1.1),(2.18),(2.19), and being such that { (u, ) differs from
I, by a quantity of order g Thus, in particular, we shall have established that the exis~
tence of a solution of the boundary=-value problem (1.1), (2. 18) follows from the exist-
ence of the optimal control #, (£} . To prove this we consider an auxiliary problemof
minimizing functional (1,8) on the majectories of the linear system

) =A@z +Fef (@), +BHu® (8.9)

We denote the minimal value of functional (1, 3) on the trajectories of system (3.5) by
1. From the definition of 1, (f) and (2.11) we conclude that [, <{ I, <( [,. I
addition, from the linearity of {2.11) and (1.3) follows the existence of the optimal
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control 4, (f) and of the trajectory z, (f) on which the value 7, of functional (1.3)
is achieved /5/. In analogous manner we construct the optimal control 1, (¢) which
supplies the minimum of functional (1.3) on the trajectories of the linear system (2. 3).
By Ir and z,(t)we denote the value of functional (1.3) and the trajectory of system (2.3)
corresponding to u, (¢). The subsequent construction is analogous to that in Sect, 2,

Namely, we fix a certain number § > B satisfying the inequality § > g, (my), my=
max (mg, m;). Then,similar to (2.12), we get that for all & for which

By (mo) + & Sza_zmoﬁ -t a9e?) By <P (3.6)
oy (my -+ ef) B; < 1

the sequence zx (2), k> 1 is bounded. Precisely,
I$rc(t)|\mo+35

Further, by a verbatim repetition of the arguments in Sect. 2, we get that zy, u; con-

verge to z, u which satisfy (1.1),(2.18),(2.19). To estimate the difference — I, 4

I (z, u) it is sufficient to estimate I (z, u) — I, since Iy < I, < I (z, u). However,

from (2.4)— (2.8) and (2, 18), using bounds of type (2.16) and (2.17), we get that
I(z, u) = Iy + O (&%

By the same token we have proved the assertion of Sect. 3, 2.

3.3. Let us show that the solution of the boundary-value problem (1.1), (2.18) is
unique in the region |z | < my -+ ef . Assume the contary. Let z;, z, be two
solutions of (1,1), (2.18), Then, with due regard to (2.8), we have

t

(1) — 2, (8) = e 20 (8, 9) [ (@1.(6), ) — fa (22 (5), )] dIs — @7
¢ T
e$2.(t,9) B, 2" (61 1) P(®) 1 (2 (%), 7) — F (20 (%), )] dds
1] F]

We now set -
Bo=sup, |7 () — z2(8)|, 0T (3.8)
Then from (3, 8), (3.7) we obtain

Bo << BoeBiay (my + 365

Hence from (3. 5) we conclude that z, (#) = x, (f). From this identity follows the
uniqueness of the solution of boundary-value problem (1, 1), (2.18) with respect to G,(2)
as well,

4, Above we have established the existence of a solution of Problem 1 and proposed

an approximate method for solving it. This method consists of two stages.

1°, Using the solution of Problem 1 for a linear system (1.1) with & = (i,e.
using (2.2)), we determine g, such that relations (3.4), (3.5) are valid for all 0 C e
8. We emphasize that the value g, depends only on the matrix P (f) and on the coef-
ficients of the controlled ssystem (1.1),

2°, For these values of € we determine from formulas (2.1) and (2. 8) the zero
approximation ug, z, to the optimal control and trajectory, while from formulas (2.4),
(2.6), (2.8), the first approximation u,, z;.
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We note that by virme of (2.1) and (2. 4) the zero and first approximations construc-
ted to the optimal control are obtained in a form suitable for synthesis (i.e. as functions
of the phase coordinates).

Let us consider certain estimates of the closeness of the optimal values of functional
(1.3) for the original controlled system (1.1) and for the auxiliary dynamic system (2.3).
We start with the zero approximation which is determined by formulas (2. 1), (2.8)with
e = (), while the corresponding value of functional (1.3) equals

z' (0) P (0) = (0) (4.1)

From (2. 18), (2.6) we conclude that 7

|Gy ()| << & (s + o (mo + B sup \ [P (1 9)] ds (4.2
{
Relations (4. 1), (4.2), (2.19) show that the difference between the optimal value of func-
tional (1.3) and the zero approximation to it is of order e,

The first approximation is given by formulas (2.4)— (2.8) in which we should set
k = 1. Using (2.4) - (2.8), (2.16),(2.17) with k =1, analogously to the zero approxi-
mation, we get that the difference between the optimal value of functional (1.3) and
the first approximation to it is of the order €?since the functions Q and @} are the
squares of the quantities already obtained.

We now turn to a more interesting question which is the following, We take the con-
ol uy, k =0, 1, determined by (2.4), and we control system (1.1) using u,- We are
required to determine the allowable error in functional (1. 3)when the optimal control
in system (1.1) is replaced by u, Here it is sufficient to establish a bound of the form
(2. 186), since from it follows, completely analogously to (4.2)and(2,17), a bound on the
accuracy with respect to the functional, Thus, we take some arbitrary fixed & and we
estimate the difference between the solution of problem (1.1), (2.18), (2.19) and the
function y (t) defined by the following relations:

yO=AQyQ-+ef@® 0B OE@OyO+ G’ () 4.9)
y(0) =z(0), o<t<T

where Gy (f) is a solution of Eq. (2.5). It can be shown that the solution ¥ (¢) of the
Cauchy problem (4. 3) exists and satisfies bound (2.12).
We now set r () = x () — y (). Then on the basis of (1,1),(2.18), (4.3),(2.7)
t

{r )| <& [(Ay (8) + g0y (Mo + &B)) |7 (5)] 4 8] Grx (5) — G4 (s) [1 ds
]

Hence, applying the Gronwall-Bellman lemma, in view of (2.17) we obtain the desired
bound on the difference x (¢) — y (¢). Here the estimate of the accuracy with respect
to the functional can now be established similarly to (2.17) and (4.2). This estimate
shows that the control in the zero approximation (2, 1) ensures an accuracy with respect
to the functional of order &, while the control in the first approximation (2.4), is of the
order g2,

Example. As an illustration of the method developed we consider a planar prob-
lem of the optimal descent of an axisymmetric controlled object with due regard to the
decelerating force of the atmosphere. Assuming that the motion is stabilized, we write
the system of equations of the center of mass in the form /11/
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u c. (M) v? .
VI —— = Sp(y)..i..—g(ll)sme
Bﬂrﬁ:nln\—lise R — »4ginf

WG g{R)|——> H=vsinb

Here v is the absolute value of the velocity, 0 is the path angle, R is the distance
from the Earth's center to the craft's center of mass, m = const is the mass, u is the
thrust, ¢, (M) is the dimensionless drag coefficient, M is the Mach number, & is the
area of the midsection, p (y) is the atmospheric density, g (R) is the freefall accelera-
tion, y = R — Ry, R, is the Earth's radius. It is assumed that the balanced angle of
attack can be neglected since we take 8 =~ — %/, m in what follows,

If we assume that gravitational force acting on the body is negligibly small in com-
parison with the remaining forces, i.e, thrust and drag, and if we take it that the motion

is close to a vertical fall,i,e. 8 = — 7/2 + A8, where the quantity A82 can be neg-

lected, then the system of equations simplifies considerably and by virtue of (4.4)takes

the form .
dT/dR = —u 4+ y(R, Dp W T, 2T = mi* 4.5)

dcos 8/dR = g (R) -~ v* | R]

where 7 is the object's kinetic energy, y = m~!¢, S is the ballistic coefficient. We
should note that with the indicated accuracy ~ A6% the first equation can be integrated
independently of the second one. The atmospheric density (see /11/) can be taken
equal to
d o (y) = py exp (— &;p) 4.6)

where Pg, 6; are given constants, We assume further that the ballistic coefficient v is

1 =co+ £82 (%)geXPP- 53(353 —1)2] 4.7

where ¢, 8, 8; are given constants, ¢ is the speed of sound in the medium, This as-
sumption can be taken as fulfilled for certain types of wingless crafts /11/. We shall
measure the altitude y from the point of intersection of the vertical along which the
body is descending to the Earth's surface and we shall suppose that the numbers ¥, Y2
V12> Y2 are given, The value of the kinetic energy 7 at altitude y; is given andequals
T (y)-
Problem 2. Choose the control u in (4.5) so as to minimize the functional
U
1=+ L w9 ds “.9)
Yz
We note that by varying the parameter L, in (4.8) we can regulate the value of the
kinetic energy at altitude y,. Let us first consider the auxiliary problem of minimizing
functional (4.8) on the wrajectories of (4, 5) without constraining the direction of the ve-
locity vector, and next let us show that the solutions of this auxiliary problem for small
e yield as well the solution of Problem 2. On the basis of (4,5) — (4.8) the auxiliary
problem posed reduces to Problem 1, In addition, the theorem's requirements are fulfilled
on the basis of (4,5)— (4.7), which in the case being examined yields the formulas for
the successive approximations to the optimal value of functional (4. 8).
We cite certain calculations as an illustration, On the basis of (4.5) ~ (4.7) the optimal
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control in the zero approximation, solving the auxiliary problem, is

uly) = Lt [T {y) P (v1 — 0] (£.9)

Here, inview of (2,1}, (2.2) .
Y1y

P(h) = [z (hy g1 — y2) \ Byz (h, 5) ds 1 , Bi=1L7
8z (h, 5) .
oh
From Eq. (4.5) with & = 0 and from (4,6)~ (4. 9) it is easy to determine the zero ap~
proximation 7, (y}, and next, using (2.4) and (2, 5), the first approximation 7y, y, of
the solution of the auxiliary problem.

Now, to solve Problem 2 it suffices to note that the approximations 7y, ug, & = 0,

1, ... ,constructed in the auxiliary problem yield, for small ¢, the approximations for
Problem 2 as well, In fact, for this it is sufficient only to verify that the successive ap-
proximations 7,; do not vanish, For 7, this follows in view of (4, 9) and (4. 5) from
the homogeneity of the equation satisfied by 7,. Using this fact, the uniform bounded-
ness (see Sect, 2) of the successive approximations of the auxiliary problem, we get that
the approximation 7, does not vanish for an appropriate choice of €.

Note. We note that the descent problem with due regaxd to the force of gravity can
be analyzed in similar manner. Here the descent problem can be reduced to Problem 1
by imposing constraints derived from the requirement that the successive approximations
Tk, k = 0,4 in the auxiliary problem do not vanish,

e 2000 {1 RY2 (R, 8}, z{s, sy =1
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